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A B S T R A C T

Birds respond strongly to vegetation structure and composition, yet typical species distribution models (SDMs)
that incorporate Earth observation (EO) data use discrete land-use/cover data to model habitat suitability. Since
this neglects factors of internal spatial composition and heterogeneity of EO data, we suggest a novel scheme
deriving continuous indicators of vegetation heterogeneity from high-resolution EO data.
The deployed concepts encompass vegetation fractions for determining vegetation density and spectral traits

for the quantification of vegetation heterogeneity. Both indicators are derived from RapidEye data, thus fea-
turing a continuous spatial resolution of 6.5 m. Using these indicators as predictors, we model breeding bird
habitats using a random forest (RF) classifier for the city of Leipzig, Germany using a single EO image.
SDMs are trained for the breeding sites of 44 urban bird species, featuring medium to very high accuracies

(59–90%). Analysing similarities between the models regarding variable importance of single predictors allows
species groups to be determined based on their preferences and dependencies regarding the amount of vege-
tation and its spatial and structural heterogeneity. When combining the SDMs, models of urban bird species
richness can be derived.
The combination of high-resolution EO data paired with the RF machine learning technique creates very

detailed insights into the ecology of the urban avifauna, opening up opportunities of optimising greenspace
management schemes or urban development in densifying cities concerning overall bird species richness or
single species under threat of local extinction.

1. Introduction

Modelling potential breeding sites that are species-specific can be an
integral part of urban, peri-urban and non-urban biodiversity studies
and conservation strategies (Guisan and Thuiller, 2005). The urban
environment is especially rich in birds, often surpassing their rural
surroundings in terms of biomass and diversity (Chace and Walsh,
2006). A key element of sustaining viable population sizes of single
species under threat or increasing overall species richness and abun-
dance is the identification and protection of breeding sites. A core
element determining the breeding sites of birds is vegetation structure
such as vegetation density and diversity (Paker et al., 2014). Earth
observation datasets provide a cost-effective, reproducible and
straightforward method for the analysis of such vegetation parameters.

Satellite-derived information has been widely used to predict spe-
cies richness, diversity and turnover in a variety of kingdoms (Rocchini
et al., 2010, 2017). While the analysis of such diversity parameters is

valuable (Rocchini et al., 2010), those analyses lack species-specific
information. For multiple use cases such as species protection measures
or environmental impact assessments, species distribution models
(SDMs) are needed (Guisan and Thuiller, 2005). However, there is a
clear lack in SDMs since existing models have two major problems re-
garding the characteristics of input data and modelling technique.

Regarding modelling techniques, studies often use regression (Bino
et al., 2008; Warton et al., 2015). Due to the model assumptions in-
herent to most regression methods, problems such as collinearity be-
tween predictors, outliers or non-linear and exponential relationships
may result in bad model performance (Rousseeuw and Leroy, 2005;
Dormann et al., 2013). Thus, to overcome the aforementioned limita-
tions, a more flexible machine learning approach seems favourable for
SDMs. One particularly robust and well-established procedure in
ecology and EO studies is thereby the RF-algorithm (Cutler et al., 2007;
Belgiu and Drăgu, 2016), which is an ensemble learning method con-
sisting of a multitude of decision trees (Breiman, 2001). RFs are able to
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deal with highly collinear predictors that can be both quantitative
(numeric) and qualitative (non-numeric) with all kinds of variable in-
teractions, making them, therefore, often superior to regression.

Input data is often inadequate because a multitude of models use
classified, discrete land-use/cover data (Falcucci et al., 2007). This
implies two important pitfalls, firstly, the loss of information, namely
the internal heterogeneity in a certain land-use/cover class, and sec-
ondly, the loss of transition zones between different classes through
sharp boundaries (Palmer et al., 2002; Lausch et al., 2015). However,
transition zones and internal heterogeneity are key factors for bird
species’ distribution (He et al., 2015).

Urban environments are dynamic and complex and, within them,

sites of high biodiversity can be found next to intensely managed ones
(Haase et al., 2014; Knapp et al., 2017). This species richness, however,
seems to be in danger as recent reports state that multiple species in
Europe (Bowler et al., 2019) and also in Germany (Gedeon et al., 2004)
are in rapid decline. This trend is especially apparent for bird species
breeding in urban and agricultural settings, since those feature the most
rapid reduction of all regarded habitat types (Gedeon et al., 2004).
Since the case study area of this paper, the city of Leipzig, Germany, is
characterised by a dense centre with vast parks as well as a large nat-
ural forest and fertile agrarian surroundings, it is an ideal case study for
developing models for those endangered species groups and also for the
large group of forest birds (Wellmann et al., 2018).

Fig. 1. RapidEye satellite image of the city of Leipzig with indication of the study area location in Germany and the breeding bird dataset showing bird species
richness for all parts of the city but the areas that were excluded due to large-scale change in biotope composition between the acquisition of the RapidEye scene and
the bird survey.
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Urban ornithological studies show that even small patches of ve-
getation can serve as viable breeding sites (Ikin et al., 2013) and that
birds respond to both vegetation composition and configuration (Chace
and Walsh, 2006). Hence, for complex urban settings such as the city of
Leipzig, high-resolution data is much needed. Therefore, high spatial
resolution data, as provided by the RapidEye satellite fleet, seems fa-
vourable for deployment in the urban environment (Tigges et al.,
2013). From such high-resolution EO data, various plant characteristics
can be analysed by using the spectral traits approach (Lausch et al.,
2016). This spectral trait framework, introduced by Lausch et al.
(2016), builds on the traits framework (Kattge et al., 2011) by in-
corporating those plant traits that are detectable by EO based techni-
ques. The spectral traits concept hence includes biochemical, biophy-
sical, physiological, structural, phenological or functional
characteristics of plants, populations and communities (Kattge et al.,
2011; Lausch et al., 2016).

The spectral trait concept is a functional approach in which every
plant trait corresponds to a function, that is relevant for (i) the plant
and (ii) the larger ecosystem (Violle et al., 2007). Therefore, the spec-
tral traits approach is an efficient interface linking EO data to key
ecosystem characteristics, functions and services (Lausch et al., 2016),
which in return could be linked to bird species breeding behaviour.

One way of analysing the spatial diversity of spectral traits in a plant
community is by quantifying the composition and configuration of a
plant trait related product, e.g., Normalized Difference Vegetation
Index (NDVI), in space and over time (Wellmann et al., 2018). For this,
texture measures by Haralick et al. (1973), such as the grey level co-
occurrence matrix (GLCM), are powerful and well established methods
used by St-Louis et al. (2009) for the prediction of bird species diversity.

Consequently, the combination of high-resolution satellite data
paired with machine learning techniques can create novel and detailed
insights into the ecology of urban birds and their habitats. Since there is
no established framework for modelling bird-breeding sites based on
continuous spectral EO data, this paper seeks to develop an according
methodology to predict the breeding sites for urban bird species. The
following research questions guide the development:

(i) Are fractional vegetation cover and spectral plant traits meaningful
indicators for the prediction of breeding sites for species in the
urban environment?

(ii) What are suitable modelling techniques?
(iii) How accurate are SDMs solely derived from EO data?
(iv) How do the SDMs help to predict bird species richness?

2. Study area

Leipzig is a dense city in Eastern Germany located at 51°20′N,
12°22′E with 560,000 inhabitants. The city houses a considerable
number of natural biotopes and breeding-bird species richness is com-
parably high (Fig. 1). Almost 40% of all bird species breeding in Ger-
many (n = 314) can also be found in Leipzig (n = 120) (StUfa, 1995;
Völkl et al., 2004). Important breeding grounds are located along a
north to south transect in the large remnants of the alluvial forest on the
floodplains. This forest is one of the largest of its kind in Europe and
features a quasi-natural structure in terms of species composition,
which is dominated by ash, oak, beech, lime and sycamore trees. Next
to forested areas, different types of urban greenspaces, urban building
structures, and permanent agricultural systems in the surrounding may
provide rich breeding grounds (StUfa, 1995) (Fig. 1).

The development of Leipzig since the German reunification in 1990
can be quickly summarized. In the observed period, Leipzig’s popula-
tion declined slightly leading to a stable stock in central buildings.
Suburbanisation tendencies on peri-urban agricultural land in the
northern outskirts lead to large-scale developments in the outskirts,
mostly consisting of logistic infrastructure, industrial facilities or the
exhibition grounds. These developments mostly occurred outside of

important nesting habitats for breeding birds, since the high-intensity
farming during the socialist past until 1990 left few ecological niches. A
second important trend in the southern outskirts of the city are the
flooding of former opencast mines (Wolff et al., 2016).

Since the 1990s, the public urban green infrastructure such as the
alluvial forest, parks, graveyards and allotment garden facilities did not
change on a broad scale. The overall extent of forest cover did not
change from the 1990s onwards and road-side trees are predominantly
considerably old, which leads to small changes over a 13 year period in
traits (trees younger than 20 years only make up 15.6% of total road-
side trees) (Leipzig, 2018, 2019). The largest amount of old-growth and
undisturbed vegetation can be found on graveyards and in the large
alluvial forest, called “The Auwald.” Most parts are protected under the
FFH statues which therefore obliges strong protection measures. This
stability is also true for parts of the private green, for instance in the
Wilhelmine quarters where old grown vegetation prevailed throughout
the investigation period.

In summarizing the findings above, we see that, while the structure
of the central areas remained very stable, there was considerable
change at the outskirts of the city. Fig. 1 shows where the change was
assessed with two biotope maps, the first from 1993 and the second
from 2005. All blank areas inside the city featured more than a 35%
change in biotope types between the two timeframes under con-
sideration and where subsequently disregarded in this study. This was
necessary due to the time lag between the acquisition of the bird dataset
and the RapidEye image.

3. Data and methods

To model the presence and absence of 44 breeding bird species, we
propose a new methodology that only uses a single RapidEye EO data
set (Fig. 2). The EO based methodology builds on fractional vegetation
cover, the NDVI and a principal component analysis (PCA). We then
used these products to calculate indicators of spatial heterogeneity,
mainly with a grey level co-occurrence matrix (GLCM) and indicators of
vegetation density. Using a random forest (RF) classifier on the afore-
mentioned data sets, we predicted presence and absence patterns of
single species, of species clusters, and of overall species richness.

3.1. Earth observation (EO) data and indicator calculation

3.1.1. Pre-processing of RapidEye data
The RapidEye sensor features five spectral bands in the 400–850 nm

range (blue, green, red, red-edge, near infra-red) with 6.5 m spatial
resolution (Tigges et al., 2013). This study uses a RapidEye scene of the
city of Leipzig that was acquired on June 3, 2011. The timing of the
scene matches the vegetation period and the breeding patterns of the
majority of the urban bird species. A bird-breeding calendar revealed
that during June the largest proportion of the studied birds are actually
breeding (Südbeck, 2005). The acquired RapidEye level 3A product was
atmospherically corrected with ATCOR 2, assuring best transferability
and interoperability between satellite scenes, geographic regions and
different sensors (Richter, 2011).

Based on the atmospherically corrected RapidEye scene, a map of
fractional vegetation cover was calculated (Fig. 3) (Haase et al., 2019).
This dataset provides subpixel information about the share of vegeta-
tion featured in each pixel. It was used to mask out areas in the original
RapidEye dataset that are not primarily vegetated. As a cut-off value,
75% was chosen, meaning that only pixels featuring at least a 75%
cover in vegetation were used in the study. This threshold was found to
be a good compromise between reducing spectral information of build-
up origin as much as possible while not dropping too many pixels where
only minor portions are not vegetated or where some soil signal is
coming through, which is relevant for grasslands. Furthermore, ex-
cluded were agricultural areas that do not feature permanent crop
systems in the breeding period, areas were detected using the 2011
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biotope map.

3.1.2. Calculation of functional vegetation indicators
From the masked RapidEye image, a PCA and a NDVI layer were

computed. A PCA is a statistical procedure that transforms collinear
datasets into linearly non-correlated variables, in our case the five
spectral bands of the RapidEye data set (Jolliffe, 2002). Since only
pixels with vegetation were included in this procedure, the first prin-
cipal component describes the diversity found in the vegetation’s whole
traits. The NDVI, in turn, is more specifically oriented towards the
calculation of the greenness of the plants. This is very much related to
the plants’ capacity for performing photosynthesis and, respectively, to
the traits of the plants that are associated with photosynthesis (Gamon
et al., 1995).

Based on the three products (NDVI, PCA band 1 & band 2) described
above, 13 different indicators that describe both state and spatial het-
erogeneity in the plant communities are calculated for every 500 m by

500 m cell (Table 1). The GLCM indicators by Haralick et al. (1973)
assess local image texture by calculating the differences between the
values of adjacent pixels values, e.g. NDVI value. Based on this fre-
quency matrix, eight indicators were calculated and their mean and
standard deviation values assessed for every cell. Furthermore, two
measures of spatial autocorrelation and three summary statistics were
calculated.

Since we derived all indicators used for modelling from the same
RapidEye dataset, a correlation analysis was performed using a cut-off
value of 0.9. The comparably high cut-off value was chosen because the
RF algorithm is able to deal with highly collinear data (Breiman, 2001).

3.2. Bird species distribution data and further analysis

3.2.1. The bird survey dataset and its pre-processing
The breeding bird data used in this study was collected in the city of

Leipzig over three breeding periods from 1991 to 1993 between

Fig. 2. Methodological overview; separated into input data, indicator calculation, modelling and the generated outputs.
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February and July. It describes the presence or absence of 120 species
within 1132 cells with a resolution of 500 m by 500 m. Each of these
cells was surveyed at least 5 times per year by ornithologists to map
species that were breeding. The species was marked as present in a cell
if it was observed at least once. Through this scheme, very reliable
presence and absence data could be generated (StUfa, 1995).

The dataset was treated to account for uncertainties in the occur-
rence of bird species. Firstly, only validated species sightings where
included and, subsequently, all entries marked as uncertain were dis-
regarded. Secondly, rare species had to be excluded to ensure that a
sufficient amount of presence points remained for validation of the
proposed RF-model. As a threshold, a presence to absence ratio greater
than 10% was chosen. Due to the exclusion of the rare species, only 44
of the 120 species remained for analysis.

Finally, to account for changes in landscape composition between
the acquisition time of the bird survey (1993) and the RapidEye ac-
quisition (2011), a change analysis was conducted in order to exclude
grid cells with major land use or land cover changes. This analysis is
based on two biotopes, dating from 1993 and 2011. In so doing, cells
with more than 35% change in biotope types were excluded from the
analysis. Overall, around 200 grid cells, predominantly in the peri-
urban space, were excluded.

3.2.2. Determination of functional species communities with a cluster
analysis

A hierarchical cluster analysis was performed in order to find groups
of bird species that are similar to each other in terms of their presence/

absence patterns in Leipzig, to identify coexisting species. The HCLUST (R
Core Team, 2000) algorithm used in this study iteratively assigns an
object to a cluster based on a distance measure. The allocation of group
memberships is executed on the premise of minimizing the distance
between the clusters members. Distance in this study was measured by
the Jaccard distance (1), a statistical measure computing the dissim-
ilarity between sample sets (Podani and Schmera, 2011):

= =d A B J A B A B A B
A B

( , ) 1 ( , ) | | | |
| |J (1)

where dj is the Jaccard distance, J is the Jaccard index, and where A and
B are the presence/absence points of two regarded species.

The optimal number of clusters was determined using the total
within sum of squares method (TSS) (2):
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where yi is a single instance of the dependent variable and y its mean.
The ideal number was visually derived from an elbow plot.

3.3. Machine-learning based species distribution modelling techniques

This study tested five different modelling techniques in terms of
their capabilities of predicting species presence/absence of birds in
Leipzig (Table 2). While overall the ensemble model delivers the results
with the highest accuracies, this study recommends the RF-model as the
means of choice. This is because the additional complexity and com-
puting efforts do not justify a slight increase in accuracy.

3.3.1. Random forest modelling and hyperparameter refinement
RF is an algorithm capable of solving regression and classifications

problems (Breiman, 2001), providing fast model training and compar-
ably high accuracies (Mitchell, 2011). In this study, 44 random forests
are grown—one for every species—to predict species presence/absence
pattern with an independent test data set.

For the hyperparameter computation, we used a threefold cross
validation scheme: Regarded parameters and their value ranges are K-
FEATURES (1–13 in steps of 1), determining the number of variables
chosen at each split in a tree; NTREE (500–1500 in steps of 100) de-
termining the number of trees to be grown; and NODESIZE (1–13 in steps
of 1), determining the minimum size of a terminal node (Bernard et al.,
2009).

3.3.2. Downsampling for bird species distribution modelling
For 32 of the 44 bird species, absence points outnumber presence

Fig. 3. Earth observation indicators calculated based on the RapidEye image (June 3. 2011); (A) a fractional vegetation map, (B) the first band of the principal
component analysis (PCA) and (C) the normalized difference vegetation index (NDVI).

Table 1
Overview of the indicator types expressing vegetation density or vegetation
heterogeneity.

Type Name Reference

Local spatial autocorrelation GLCM mean (Haralick et al.,
1973)GLCM variance

GLCM correlation
GLCM homogeneity
GLCM contrast
GLCM dissimilarity
GLCM entropy
GLCM angular second
moment

Global spatial autocorrelation Geary's C (Geary, 1954)
Moran's I (Moran, 1950)

Descriptive statistics Standard Deviation
Coefficient of Variation (Datt, 1998)
Sum
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points. Since highly unbalanced data can cause problems in the random
forest classification, a downsampling approach for the species absences
was used (Chen et al., 2004). In this study, rare species were down-
sampled, meaning that absence points were disregarded until a ratio of
1:3 between presence and absence points was reached. This ratio was
found to produce the most accurate results overall. Downsampling in
this study is regarded as a very critical and important step which needs
to be carefully addressed and iteratively tested.

3.4. Accuracy metrics

The model quality will be discussed based on three indicators;
sensitivity (3) specificity (4) and overall accuracy (5) (see Table 3).
Overall accuracy thereby refers to the ratio of correctly classified in-
stances. Sensitivity denotes the ratio of all positively classified instances
(in this case species presences) correctly classified. Specificity in turn
builds the same ratio for species absences (Kuhn, 2008).

The quality of the diversity models will be discussed based on the
mean absolute error (MAE) (6), which is a measure of difference be-
tween two continuous variables, in our case predicted species richness
versus observed species richness:

=
=

MAE
n

Y Y1 | |
i

n
i i1 (6)

where n is the number of observations, Yi the predicted value and Yi the

observed value.

3.5. Connecting remotely sensed spectral traits with bird species traits

The trait framework is an integral part of community ecology
(McGill et al., 2006). As an outlook, we therefore demonstrate how the
trait approach could provide for a direct modelling interface between
remotely sensed spectral trait indicators and bird species traits. For this
part, a dietary trait of the 44 bird species is used. The data is taken from
Sibly et al. (2012).

For modelling the relationship between the proposed indicators and
the selected bird species traits, we used a multiple correspondence
analysis (MCA). A MCA transforms nominal categorical data into a low-
dimensional feature space. It is thus a methodology similar to the PCA –
but for categorical data. This way, underlying structures and corre-
spondences of different nominal categorical variables can be detected
(Greenacre and Blasius, 2006).

4. Results

4.1. Species distribution modelling

4.1.1. Accuracies of computed random forest models
The dataset was split into 20% for testing and 80% for growing the

random forests. The mean overall accuracy for the 44 models, based on

Table 2
Final decision matrix on choosing the modelling technique, the green shading indicates the best outcome per criterion.

Table 3
Confusion matrix and formulas for accuracy indicators.

A = True Positives; B = False Negatives; C = False Positives; D = True Negatives;
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the testing data set, is 78%, with the best model featuring an overall
accuracy of 90% and the worst 59% (Fig. 4 and Table A1 in the
Appendix). The mean accuracy for predicting absences (representing
species’ specificity) is approximately 77%, while the prediction for
presences (representing species’ sensitivity) is about 70% (Table 2).
Low sensitivity values can especially be found in models where down-
sampling led to a strong reduction in modelling cases.

4.1.2. Predictions of urban bird species distributions
The RF-models were used to predict the breeding sites of 44 urban

bird species. The prediction is based on the independent testing dataset,
containing 20% of the cells of the bird dataset. Fig. 5 shows the nesting
patterns for the three different illustrative species introduced in Section
4.1. Overall, the breeding patterns for the illustrative species are well
reproduced, with only minor misclassifications.

In Fig. 5 the sparrow is shown on the left. It becomes clear that the
sparrow breeds across the whole study area except for the loam-rich
riparian flood plain forest. The skylark is shown in the middle, it pre-
dominantly inhabits the agriculturally dominated peri-urban areas.
Thirdly, the great spotted woodpecker is shown on the right. It breeds
in forested areas, predominantly in the floodplain forest. Consequently,
the three selected species demonstrate the versatility and capability of
the presented RF-modelling approach to model and analyse vastly dif-
ferent habitats.

4.1.3. Predictions of urban bird species richness
Using the TSS measure, an optimal clustering solution was found

that encompassed five clusters (Fig. 6 – upper section). Based on clus-
ters A, B and D, and a typical species for each of those, the results of the

clustering will soon be illustrated. Cluster A features two species types,
firstly cavity nesting birds breeding in tree holes like the great spotted
woodpecker (Dendrocopus major) and the mallard (Anas platyrhynchos)
breeding along the river embankments in the floodplain forest. Cluster
B predominantly features ground-nesting birds, which can usually be
found in agriculturally dominated surroundings on meadows and lawns
like the Eurasian Skylark (Alauda arvensis). Cluster D features hemer-
ophile species that have very broad geographic distributions across ci-
ties and show diverse breeding patterns. For instance, the Sparrow
(Passer domesticus) breeds in holes in buildings but also in dense woody
vegetation and is commonly found across the built-up area in Leipzig
(BirdLife International, 2017).

By combining the 44 SDMs, patterns of urban bird species richness
can be modelled. The most accurate results are generated for clusters A
and D, which represent species in the forested areas and in the urban
core respectively. This means that the model fulfils its purpose to cover
the main urban bird species classes. The most inaccurate is cluster B,
representing species breeding in the open landscapes in the peri-urban
surrounding.

The overall bird species richness depicted in cluster F was found to
feature an MAE of six. Therefore, it can be seen that species richness is
underestimated in grid cells that feature comparably high numbers of
present bird species and overestimated in areas where few to no birds
are actually found.

4.2. Variable importance of random forest models

This study introduces texture metrics as new indicators for the
creation of species distribution models. Table 4 shows that the majority

Fig. 4. Overview of the performance of the 44 models with respect to their sensitivity and specificity, ordered by their overall accuracy in the modelling process.
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of species feature these metrics as their most important or second most
important variable. In contrary, only five species feature the NDVI as
their most important variable and thirteen a PCA. Since the majority of
species feature both a classical remote sensing indicator and a texture
metric as their two foremost variables, we can show the benefits both
approaches can deliver when combining pixel-based and texture-based
approaches.

The findings above support our previously outlined thesis, which
stated that the structure in vegetation communities is of primary im-
portance for bird habitat prediction. In contrast to this, the global
spatial autocorrelation indicators which regard the whole cell rather
than only in the local vegetation community, have low explanatory
power as none of the species feature these measures as their most im-
portant variable.

Variable importance gives valuable insight into the functioning of
the RF-model. This is shown in Fig. 7 where the interaction between the
two foremost variables for two different bird species are shown. Vari-
able relationships are highly non-linear and are indicative of the species
presence/absence patterns only in specific parts of the variable range.
Thus, we arrive at our second assertion: that flexible machine learning
approaches are more feasible for such work and are more appropriate
than many regression techniques, since they are free of prior assump-
tions and only work on the patterns in the data itself.

4.3. Connecting the spectral trait concept to the traits of bird species

So far this study has modelled the presence/absence patterns of
breeding birds, hence operating at the species level. In addition, the
proposed methodology also provides the opportunity for connecting the
spectral plant trait indicators directly to functional bird traits. This is

illustrated in Fig. 8, which shows that our two categories of indicators,
GLCM texture metrics on the one hand and NDVI & PCA on the other,
are indicative of a dietary trait.

Fig. 8 shows that our newly proposed indicators nicely correspond
with a dietary species trait. This is the case if behavioural traits are
closely proximate to the developed indicators in the feature space. Birds
feeding on invertebrates can be associated with the GLCM texture
metrics, hence the heterogeneity of local vegetation is most important
for the presence of birds featuring this trait. In contrast, a diet based on
plants is associated with the indicator NDVI. This means that for birds
that are directly dependent on vegetation the amount of photosynthetic
activity is most important for their presence/absence patterns. The first
PCA band is associated with omnivores and the second PCA band with a
diet based on seeds. This amplifies the finding that the pixel based
approach, which describes the state of the vegetation and not its
functional diversity, is most important for a diet that includes plant
material.

5. Discussion

This study proposes a new approach to the integration of satellite-
derived data for a more transferable, comparable and cost-efficient way
to derive high-resolution SDMs. It does so by deriving indicators di-
rectly from continuous Earth observation data in order to reduce the
deficiencies arising from pre-classified land cover/land use products.
These indicators build on functional vegetation traits as crucial habitat
variables for species modelling. Since previous studies predicting an-
imal distribution patterns from space focussed on species richness and
diversity (Rocchini et al., 2010), this study expands these efforts by
introducing a species-specific approach.

Fig. 5. Predictions (in capital letters) and reference presence/absence data based on the testing data set (20% of all data points) for three bird species in Leipzig; the
great spotted woodpecker (Dendrocopos major, A & a), the skylark (Alauda arvensis, B & b) and the sparrow (Passer domesticus, D & d). Naming is congruent with
the belonging of the single species to the clusters presented in Fig. 6.
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With SDMs from EO data, new areas of environmental assessments
come into reach that are highly relevant for both scientific and societal
actors (Kerr and Ostrovsky, 2003). This could be species-specific con-
servation efforts, environmental impact assessments, or allocation of
new construction developments in order to minimize environmental
costs.

A key challenge for improving existing SDMs is the scarcity of
spatially continuous high-resolution land-use/cover datasets, particu-
larly in urban environments (He et al., 2015), because discrete EO data
products are limited in extent and temporal and spatial resolution.
Thus, they cannot show internal variability of classes or transition
zones, or small linear elements (Lausch et al., 2015). This is especially

Fig. 6. Models showing the relation between predicted and observed values for the five species clusters (A) to (E) and for all species (F) based on the testing data set.
See Fig. 4 for the species included in each cluster.
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problematic since the composition and structure of vegetation are the
most important determinants for breeding sites of birds (Ikin et al.,
2013; Paker et al., 2014). This study addresses this by integrating high-
resolution RapidEye data that is already being used in studies of urban
ecology (Wellmann et al., 2018).

This methodology will greatly benefit from the broad availability of
current and future high-resolution EO datasets, for example, Planet
Labs Doves (Wulder and Coops, 2014; Lausch et al., 2018). In com-
parison, lower resolution sensors like Landsat (30 m) or MODIS (250 m)
are too coarse to discern any spatial diversity of species-specific habitat
characteristics in the urban and peri-urban environment (Saveraid
et al., 2001; Goetz et al., 2007). While the need for higher spatial re-
solution applies to all ecosystem types, it very strongly relates to urban
ecosystems where variation in the spatial dimension is very high due to
the mix of built, sealed-green and blue surfaces (McPhearson et al.,
2016).

Especially good SDMs were derived for birds breeding in typical
urban settings, in parks, gardens or in densely built areas. Besides those
hemerophile species, birds living in the alluvial forest were also mod-
elled with high accuracy. We therefore conclude that our methodology
is suitable for analysing both small- and large-scale vegetation patches
of differing degrees of naturalness, opening up the possibility of
transferring the methodology to areas outside of cities. In turn, the
models for the open land species performed the worst. This can be
partly attributed to the fact that open land species are the rarest species
in the dataset. This linkage between the number of presence points and
accuracy is at least partly related to the methodology as classification
trees function best with larger sample sizes (Chen et al., 2004; Goetz
et al., 2007). Therefore, working on larger study areas with more pre-
sence/absence data could benefit the results.

Relationships between the dependent and independent variables are
highly diverse and inherently species specific. Consequently, a flexible
machine learning approach that takes both presence and absence data
into account would be advantageous. Overall, we tested five non-
parametric machine learning techniques, in terms of their accuracy for
the given task, and found that RF is most useful, but an ensemble model
is most accurate. The versatility of RF-models for SDMs has been de-
monstrated for instance in Evans et al. (2011).

Regarding the predictors, we found that the NDVI is the second least
important indicator after the measures of autocorrelation. The NDVI
analyses only a single trait in the vegetation, i.e. its chlorophyll content

or degree of greenness, and is thus a poor indicator for overall func-
tional diversity (Wang et al., 2003). However, studies that already in-
corporate EO data for species diversity or species richness analysis often
rely on the NDVI without conducting sensitivity analysis (Seto et al.,
2004; Goetz et al., 2007; Bino et al., 2008). Between the NDVI and
species richness of different taxa varying indicator relationships were
found (Bino et al., 2008), raising the question of reliability and trans-
ferability. In this light, a PCA seems more promising. When computed
only in vegetated areas, PCA analysis represents a large variety in plant
traits (Estes et al., 2010). In our case, the first two PCA bands explained
99% of the variance in the spectral backscatter. We found that the PCA-
based predictors were the second most important. This suggests that
more effort must be taken to analyse the degree of functional diversity
in plant communities rather than analysing derivatives of photosynth-
esis capacity, as in the NDVI (Estes et al., 2010).

We facilitated our analysis of functional diversity by deploying
texture metrics, which we find to be the most important indicator type.
These indicators by Haralick et al. (1973) depict local spatial hetero-
geneity and are thus able to capture the diversity in functional plant
characteristics. So far, this method has only been used rarely for species
richness analysis (St-Louis et al., 2009; Estes et al., 2010) or in the
urban context (Wellmann et al., 2018). This is unfortunate as modelling
plant functional diversity from space is currently at the forefront of EO
science (Jetz et al., 2016; Schneider et al., 2017; Kissling et al., 2018)
but has not yet been adapted into SDM modelling.

Finally, we show that the concept of spectral traits also allows for
future binding of remotely sensed characteristics to other species traits.
This is a new and promising step for functional ecology and needs to be
further evaluated in upcoming studies. Since there has been a large-
scale diminishing of insectivorous birds across Europe recently, the
modelling of birds featuring these traits is timely and needed and could
help in evaluating and improving potential habitats (Bowler et al.,
2019).

In the course of the study, datasets of vegetation and building
heights (with 2 m resolution) and a soil map were added. These datasets
only slightly improved model performance (1–2% on average). We
therefore aimed for a less data-intensive approach by using only a single
EO dataset as model input. This also means that the approach will be
more transferable.

6. Conclusions

This study shows that satellite-derived vegetation parameters de-
scribing the composition and configuration of vegetation traits in a
continuous way can play a crucial role in expanding the knowledge
about species distribution patterns. Generally, results are promising and
show that the usage of a single RapidEye scene paired with machine
learning models can produce SDMs at high resolution and accuracy.
Since the provisioning of suitable nesting grounds are key for the sur-
vival of a species, the adequate modelling of the breeding sites is very
important. This is especially true because currently most cities do not

Table 4
Indicators covered in this study for the test for bird breeding habitat and their
frequency of usage in the first two important variables in the 44 models.

Indicator type Primary variable Secondary variable

Texture measures 26 29
Global spatial autocorrelation 0 1
NDVI 5 4
PCA 13 10

Fig. 7. Interactions between the two foremost important variables for (a) the Eurasian skylark (Two texture metrics) and (b) the great spotted woodpecker (PCA –
Texture metric).
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provide resources for additional bird monitoring covering the entire
city.

For the preservation and extension of urban biodiversity spatially
explicit data in high-resolution is necessary for well-informed land and
green-space management. This study provides a window of opportunity
for a better understanding of coupled human-environmental systems in
the city, by exploring the effects of vegetation diversity and structure on
the breeding behaviour of urban birds. This will ultimately help to
adapt land management schemes or to steer urban development such
that bird-breeding sites are minimally affected or might even benefit
from new and/or existing constructions.
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